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Abstract

Using the theory of quantized equivariant vector bundles over compact coadjoint orbits we
determine the Chern characters of all noncommutative line bundles over the fuzzy sphere with
regard to its derivation-based differential calculus. The associated Chern numbers (topological
charges) arise to be noninteger, in the commutative limit the well-known integer Chern num-
bers of the complex line bundles over the two-sphere are recovered. © 2002 Elsevier Science B.V.
All rights reserved.

MSC:55R10; 54A40

Subj. Class.:Differential geometry; Noncommutative geometry

Keywords:Fuzzy line bundles; Chern character; Topological charges; Fuzzy sphere

1. Introduction and overview

Classical gauge field theories exhibit interesting features connected with the geometry
and topology of nontrivial fiber bundles (over space or space–time). Examples are monopole
and instanton solutions.

The Serre–Swan theorem [1] (cf. [2,3]) leads to a complete equivalence between the
category of continuous vector bundles over a compact manifoldM and the finitely generated
projective modules over the unital commutativeC∗-algebraC(M) of continuous functions
overM. This circumstance can be generalized to the smooth case [3] and even holds for
noncompact manifolds. Moreover, the geometry ofM is encoded inC(M).

In noncommutative geometry one proceeds bydefiningvector bundles as finitely gen-
erated projective left, right or bimodules over some algebra, which is thought of as the

∗ Corresponding author.

0393-0440/02/$ – see front matter © 2002 Elsevier Science B.V. All rights reserved.
PII: S0393-0440(01)00072-9



H. Grosse et al. / Journal of Geometry and Physics 42 (2002) 54–63 55

algebra of functions over some noncommutative manifold. Accordingly, thegeometrical
nontriviality is purely algebraical and encoded solely in projective nonfree modules over
the noncommutative algebra under consideration.

For the fuzzy sphere this case has first been analyzed in [4](see also [5]), leading to
scalar and spinor field configurations in monopole backgrounds. A different approach using
spectral triples and their Dirac operator-based differential calculi has been used in [6,7].
This leads to integer topological charges similar to [4].

We review the definition of the Chern character on projective modules in Section 2 and
the complex line bundles over the two-sphere in Section 3. In Sections 4 and 5, we will
show that the Chern character of projective modules over the matrix algebra of the fuzzy
sphere gives, with respect to its free derivation-based differential calculus, rise to noninteger
Chern numbers. In the commutative limit the well-known Chern characters of complex line
bundles over the two-sphere with its integer topological charges are recovered.

2. The Chern character of projective modules

LetA be a complex unital not necessarily commutativeC∗-algebra and denoteA⊗Cn by
An. Then any projector (self-adjoint idempotent)p ∈ Mn(A), whereMn(A) = A⊗Mn(C)

denotes then× n-matrices with coefficients inA, defines a (finitely generated) projective
left A-module byE = Anp. Elementsψ of E can be viewed asψ ∈ An with ψp = ψ .
If A is further endowed with a differential calculus(Ω∗(A),d), the Grassmann connection
∇ : E→ Ω1(A)⊗AE ofE is defined by∇ = p◦d. It satisfies∇(fψ) = f ∇ψ+df⊗Aψ
for all f ∈ A,ψ ∈ E. After extending∇ toΩ1(A)⊗A E one can define theA-linear map

∇2 : E→ Ω2(A)⊗A E, (1)

called the curvature of∇. For more details, see [8,9]. Evaluating∇2 one finds∇2 =
p(dp)(dp), whereas if we write(pij ) = p ∈ Mn(A), (dp) is the n × n-matrix with
coefficients dpij and the entries ofp(dp)(dp) arepil dplk ∧ dpkj. The curvature can be
viewed as∇2 ∈ Ω2(A) ⊗A EndA(E), where EndA(E) denotes the rightA-module of
endomorphisms ofE, i.e.A-linear mappings fromE toE. Now define

F := Tr p(dp)(dp) ∈ Ω2(A), (2)

which is a cocycle, i.e. dF = Tr(dp)(dp)(dp) = 0. Here Tr is the trace in EndA. SoF
defines a cohomology class [F] ∈ H 2(A). More generally, the Chern character ofE with
respect to(Ω∗(A),d) is the set of

Chr (p) := 1

r!
Tr p(dp)2r , r ∈ N ∪ {0},

where Chr (p) are called itsrth components. They are also cocycles and provide equivalence
classes inH 2r (A). Ch0(p) = Tr p simply gives the rank of the module.
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3. Complex line bundles over the two-sphere

One approach to the construction of the complex line bundles over the two-sphere is
the one given in [10], cf. also [11]. Starting with the complex Hopf fiberation U(1) ↪→
SU(2) � S3 � S2 and the irreducible representations of U(1) onC labeled by integers
k ∈ Z, one defines the space of smooth equivariant functionsC∞(k)(S

3,C) � ϕ : S3 → C
with ϕ(x · z) = z−kϕ(x) for x ∈ S3 andz ∈ U(1). These are modules overC∞(0)(S

3,C) �
C∞(S2,C), and as such are isomorphic the smooth sectionsΓ∞(S2, Lk) of the associated
complex line bundlesLk := S3×k C over the two-sphere.

By the Serre–Swan theorem these modules are finitely generated and projective and hence,
it is possible to identifyΓ∞(S2, Lk) with (C∞(S2,C))np, wherep ∈ Mn(C

∞(S2,C))

is a projector. In [10] the projectorsp where explicitly constructed with the help of the
equivariant functionsC∞(k)(S

3,C). The integern ∈ N turned out to be|k| + 1 and the first
Chern numbers where calculated giving

c1(p) := − 1

2π i

∫
S2

Tr p(dp)(dp) = −k ∈ Z.

Let us shortly mention thatk is related to the magnetic chargeQm of a Dirac (point)
monopole inR3 via

Qm = k
�c

2e
, (3)

where� is the Planck’s constant over 2π , c the vacuum speed of light ande is the elementary
electrical charge, meaning thatQm is quantized.

4. Fuzzy line bundles

4.1. General remarks

We start with the repetition of well-known facts about the fuzzy sphere and its free
derivation-based differential calculus. Then we use the prescription of quantizing equiv-
ariant vector bundles over coadjoint orbits to obtain the projectors that define the modules
over the matrix algebra of the fuzzy sphere and its Chern characters.

Denote SU(2) byG, its Lie algebra su(2) byg and let{Xa}a=1,2,3 be the generators of
the irreducible spin-N representation ofg acting on the representation space [N ] with dim
([N ]) = 2N + 1.

The algebra of the fuzzy sphere [12,13] is the noncommutative algebra End([N ]) =: AN ,
the algebra of(2N + 1)× (2N + 1)-matrices with complex coefficients.AN is generated
by Ya = (N(N + 1))−1/2Xa which satisfy

[Ya, Yb] = iεabc√
N(N + 1)

Yc and
3∑

a=1

(Ya)
2 = 1. (4)
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The derivation-based differential calculus (cf. [14]) onAN is defined as follows. One
chooses the three derivations (“vector fields”)ea , defined byea(φ) := [Xa, φ] for φ ∈
AN . We denote by Der3(AN) the linear subspace of Der(AN) generated by theea ’s.
Here Der(AN) is theC-vector space of all derivations ofAN .AN decomposes into [0]⊕
[1] ⊕ · · · ⊕ [2N ] asg- andG-module, respectively. The derivationsea satisfy [ea, eb] =
iεabcec, and are the noncommutative analogue of the vector fieldsLa = iεabcyb∂/∂yc on
the two-sphere. The set ofp-formsΩp

(N) overAN is the freeAN -module:

Ω
p

(N) = AN ⊗ (Der3(AN)
∗ ∧ · · · ∧ Der3(AN)

∗) � AN ⊗ (g∗
C
∧ · · · ∧ g∗

C
),

wheregC � sl(2,C) is the complexification ofg. Note thatΩp

(N) = 0 for p > 3. The

exterior derivative d :AN → Ω1
(N) is defined by dφ(u) = u(φ) for all φ ∈ AN and

u ∈ Der3(AN). It extends toΩ∗
(N) = ⊕pΩ

p

(N) by linearity and the graded Leibnitz rule.
There is a distinguished one-formΘ defined byΘ(ea) = −Xa . Θ is the analogue of the
Maurer–Cartan form satisfying dΘ +Θ2 = 0. The exterior derivative of a zero formφ ∈
Ω0
(N) = AN can with the help ofΘ be written as dφ = −[Θ,φ]. One can choose a basisΘa

inΩ1
(N) completely determined byΘa(eb) = δabI. ThenΘ = −XaΘa and dφ = ea(φ)Θa .

It follows from the procedure given in [15] (cf. also [16]) that the quantization of equivariant
vector bundles over coadjoint orbits is achieved by means of the orthogonal projection

p ∈ [N ] ⊗ [N ]∗ ⊗ [ν] ⊗ [ν]∗ ∼= AN ⊗ End[ν], (5)

which projects onto the unique irreducible subrepresentation of [N ] ⊗ [ν] with highest
(lowest) spin, i.e. onto [N ± ν]. Here [ν] is the representation space of the irreducible
spin-ν representation ofg. In the case [N − ν] we have to assume thatN > ν. So the
fuzzy line bundles obtained in this way are of the formL±2ν := (AN ⊗ [ν])p, they are
isomorphic to the(2N+1)× (2(N±ν)+1)-matrices. Herep acts from the right providing
left AN -modules. The modulesLk approximate in the commutative limitN → ∞ the
modules of sections ofLk.

Let π : G → End([N + ν]) be the irreducible representation ofG with spinN ± ν

and |h〉 its highest weight vector.|h〉 is thought of as being embedded in [N ] ⊗ [ν] by
|h〉 ⊕ 0⊕ · · · ⊕ 0. Denote byµ the normalized Haar measure onG.

Lemma 1. The projectorp : [N ] × [ν] → [N ± ν] defined above is given by

p = (2(N ± ν)+ 1)
∫
G

π(g)|h〉〈h|π(g)−1 dµ(g). (6)

Proof. Denote byp1 the right-hand side of Eq. (6). Thenp1 sends every vector in [N±ν]⊥
to zero. Now the invariance ofµ implies thatπ(g)p1π(g)

−1 = p1 ∀g ∈ G, so by the Schur
lemmap1 is proportional to the identity on [N ± ν]. Since Trp1 = 2(N ± ν) + 1, p1
restricted to [N ± ν] is the identity andp2

1 = p1. Accordingly,p = p1. �



58 H. Grosse et al. / Journal of Geometry and Physics 42 (2002) 54–63

4.2. Explicit calculations

For the sake of simplicity we identify in this section Der3(AN) with gC. It is now
our aim to calculate the first component of the Chern character determined byp, i.e. F =
Tr2(p dp dp) ∈ AN⊗(g∗C∧g∗C), where ‘d’ acts only on theAN part ofp ∈ AN⊗End([ν])
and Tr2 is the trace in End([ν]).

Lemma 2. F = f εabcXcΘa ∧Θb with f ∈ CI.

Proof. Let Ad be the adjoint representation ofG ongC � u �→ Adgu = gug−1 andΘ as
defined in Section 4.1. ThenΘ ⊗ I ∈ Ω1

(N) ⊗ End([ν]) transforms as

Θ(Adgu)⊗ I = (π1(g)⊗ I)(Θ(u)⊗ I)(π−1
1 (g)⊗ I) = π̄(g)(Θ(u)⊗ I)π̄−1(g),

whereπ̄ = π1 ⊗ π2 is acting on [N ] ⊗ [ν] andu ∈ gC, i.e.Θ ⊗ I is invariant under the
action ofG onΩ1

(N) ⊗ End([ν]). This implies for dp = −[Θ ⊗ I, p] that dp(Adgu) =
π̄(g)dp(u) π̄−1(g) and finally for the first component of the Chern character

F(u, v) = π1(g)F(Adg−1u,Adg−1v)π
−1
1 (g)

for all u, v ∈ gC. SoF is an invariant element ofAN ⊗ (g∗
C
∧ g∗
C
). Reducing this latter

space as aG-module shows that [0] appears only once, asg∗
C
∧g∗
C
� [1]. Consequently, the

subspace of invariant two-forms is one dimensional, and sinceεabcXcΘa ∧Θb is invariant,
F can be written as claimed. �

Note thatf εabcXcΘa ∧Θb can also be written as iq/4εabcYa dYb ∧ dYc, whereq andf
are related by

q = 4

i

(N(N + 1)3/2

1/2−N(N + 1)
f,

as can be seen by expanding dYa = [Xb, Ya ]Θb. It will turn out later thatq can be naturally
interpreted as Chern numbers.

What is left to do is to determinef , depending onN andv. For this note first that

Tr2(p dp(ea)dp(eb)) = f εabdXd.

Now multiply this equation withεabcXc and take the trace also inAN to get

f = εabcTr(p dp(ea)dp(eb)Xc)

2N(N + 1)(2N + 1)
, (7)

where Tr denotes the trace in End([N ])⊗End([ν]). This expression can be further simplified
by the following lemma.

Lemma 3. εabcTr(p dp(ea)dp(eb)Xc) = (2(N ± ν)+ 1)εabc〈h|[Xa, p][Xb, p]Xc|h〉.

Proof. With π̄ as above, the left-hand side is by Lemma 1:

(2(N ± ν)+ 1)
∫
G

εabc〈h|π̄−1(g)[Xa, p][Xb, p]Xcπ̄(g)|h〉dµ(g). (8)
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Now εabc[Xa, p][Xb, p]Xc are the components of the equivariant multilinear map−[Θ ⊗
I, p][Θ ⊗ I, p](Θ ⊗ I) from gC ∧ gC ∧ gC � [0] toAN ⊗End[ν]) which is constant. This
implies the assertion. �

Let us denote the expectation valueεabc〈h| · |h〉 appearing in Lemma 3 byB. Expanding
the commutators it is straightforward to see thatB = C + iD with

C = εabc〈h|XapXbpXc|h〉 and D = −〈h|XapXa|h〉. (9)

Consider now (cf. [17]) the space of homogenous polynomialsHn of two complex variables
z1 andz2 of fixed degreen ∈ N. We define the following “creation” and “annihilation”
operatorsa†

i = zi andai = ∂/∂zi , satisfying [ai, a
†
j ] = δij , which give an irreducible

representation ofg by

X1 = 1
2(a

†
1a2+ a

†
2a1), X2 = −1

2i(a†
1a2+ a

†
2a1) and X3 = 1

2(a
†
1a2+ a

†
2a2)

with spin 1
2n onHn. To computeC andD of Eq. (9) we realize the [N ]⊗ [ν] representation

onHn ⊗Hl with 2N = n and 2ν = l, respectively. An orthonormal basis ofHn is given
by

|ψk〉 =
(
n

k

)1/2

zk1z
n−k
2 with 〈ψk|ψk′ 〉 = δkk′ . (10)

First we analyze the case wherep projects onto [N + ν]. Then the highest weight vector
|h〉 ∈ Hn ⊗Hl is given by|h〉 = zn1 ⊗ zl1, i.e. (X3 ⊗ I + I ⊗ X3)|h〉 = 1

2(n + l)|h〉 and
(X+ ⊗ I+ I⊗X+)|h〉 = 0, with‖h‖ = 1. Define|w〉 := X1|h〉, thenX2|h〉 = i|w〉. Since
X3|h〉 = 1

2n|h〉 a lengthy but straightforward calculation yields

B = 2i(n− 1)〈w|p|w〉 − 2i〈w|pX3p|w〉 − 1
4in2. (11)

Now because|w〉 and|v〉 := (X− ⊗ I+ I⊗X−)|h〉 have the same eigenvalue1
2(n+ l−2)

of X3⊗ I+ I⊗X3, we know thatp|w〉 = λ|v〉. Accordingly,λ can be evaluated

λ = 〈v|w〉
〈v|v〉 =

1

2

n

n+ l
.

This gives

〈w|p|w〉 = 1

4

n2

n+ l
and 〈w|pX3p|w〉 = 1

8

n2

(n+ l)2
(n(n− 2)+ nl). (12)

Inserting Eq. (12) into Eq. (11) this gives finally forf in Eq. (7) expressed in terms ofN
andν

f = −iNν
(N + ν + 1)(N + ν + 1/2)

(N + ν)2(2N + 1)(N + 1)
. (13)

The case wherep projects onto [N − ν] is more involved, since we first have to determine
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the highest weight vector. The ansatz

|h〉 =
l∑

k=0

akz
k
2z

n−k
1 ⊗ zk1z

l−k
2

leads through(X+ ⊗ I+ I⊗X+)|h〉 = 0 to the recursion relation(k− l)ak = (k+ 1)ak+1
which is solved by

ak = (−1)ka0

(
l

k

)
. (14)

The remaininga0 is determined by the normalization condition‖h‖ = 1 and gives forak

ak = (−1)k
√
n− l + 1

n+ 1

(
l

k

)
for k = 0, . . . , l, (15)

where we have used the formula

l∑
k=0

(
l

k

)(
n

k

)−1

= n+ 1

n− l + 1
. (16)

Proceeding analogously we define|w〉 = X1|h〉, but now|w〉 = |w+〉 + |w−〉 with

(X3⊗ I+ I⊗X3)|w±〉 = (1
2(n− 1)± 1)|w±〉.

From this it follows thatpX1|h〉 = p|w−〉 = λ|v〉 andpX2|h〉 = ip|w−〉 = iλ|v〉. Using

l∑
k=0

(
l

k

)(
n

k + 1

)−1

= n+ 1

(n− l)(n+ 1− l)
and

l∑
k=0

(n− k)

(
l

k

)(
n

k + 1

)−1

= (n+ 1)(n+ 2)

(l − n− 1)(l − n− 2)
(17)

one finds with (X− ⊗ I+ I⊗X−)|h〉 =: |v〉 for the proportionality factorλ

λ = 〈v|w−〉
〈v|v〉 = 1

2

n+ 2

n− l + 2
. (18)

ApplyingX3 to |h〉 yields 1
2n|h〉 − |K〉 with

|K〉 =
l∑

k=1

akkzk2z
n−k
1 ⊗ zk1z

l−k
2 .

Since(X3⊗ I+ I⊗X3)|K〉 = 1
2(n− l)|K〉 it follows thatpX3|h〉 = (1

2n− µ)|h〉, where
µ is given by

µ = 〈h|K〉 = l

n+ 2− l
,
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for which a formula similar to Eq. (17) has been used. Now we have enough ingredients to
writeB as

B = 2iλ2((n− 2µ− 1)〈v|v〉 − 〈v|X3|v〉)− i(1
2n− µ)2. (19)

It is left to determine〈v|X3|v〉. One finds

〈v|X3|v〉 = n+ 1− l

n+ 1

(n− l)2

2

l∑
k=0

(
l

k

)(
n

k + 1

)−1

(n− 2k − 2)

= (n+ 2)(n− l − 2)(n− l)

2(n− l + 2)
.

We collect the results to obtainf in terms ofN andv

f = iν(N + 1)(N − ν)(2N − 2ν + 1)

2N(2N + 1)(N − ν + 1)2
. (20)

5. Results and commutative limit

Summarizing the calculations of the previous section we get for the Chern characterF
of the modulesLk, with k = ±2ν, the formula

F = 1
4iqεabcYa dYb ∧ dYc, (21)

where

q = 4

i

(N(N + 1))3/2

1/2−N(N + 1)
f, (22)

and

f = iν(N + 1)(N − ν)(2N − 2ν + 1)

2N(2N + 1)(N − ν + 1)2
for k = 2ν > 0, (23)

f = −iNν
(N + ν + 1)(N + ν + 1/2)

(N + ν)2(2N + 1)(N + 1)
for k = −2ν > 0. (24)

What is needed to obtain the associated Chern numbers is a certain notion of integration
over two-forms. Thus, for anyφ ∈ AN and

ω := εabcYa

8π
dYb ∧ dYc ∈ Ω2(AN),

we define the integral by∫
φω := TrN(φ), TrN(·) = 1

2N + 1
Tr(·), (25)

with
∫
ω = 1. The two-formω is the noncommutative volume form, which in the commu-

tative limit converges to the normalized volume form onS2. Consequently, the first Chern
numbers of the fuzzy line bundles determined byp are given by

c1(p) := − 1

2π i

∫
F = −q. (26)
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Fig. 1. Topological chargesq with commutative limitk between−4 and 4 as function of the fuzzyness 1/N .
These can be viewed as the (fuzzy) magnetic charges of a Dirac monopole living on the fuzzy sphere. Dashed
lines connect charges of constantν.

In the commutative limit we find for the topological charges

k = lim
N→∞

c1(p) = ∓2ν ∈ Z, (27)

where the minus sign corresponds to the projection onto [N+ν] and the plus sign to [N−ν].
Some topological chargesq and their commutative limitsk are shown in Fig. 1.

6. Conclusions

We constructed projective modules over the matrix algebraAN of the fuzzy sphere using
the prescription of quantizing equivariant vector bundles given in [15], leading to fuzzy line
bundles. With respect to the free derivation-based differential calculus(Ω∗

(N),d) onAN we

calculated the Chern characterF ∈ Ω2
(N). SinceF was seen to be SU(2)-invariant, i.e. an

SU(2)-equivariant mapping from sl(2,C) ∧ sl(2,C) to AN , it was unique up to a factor.
The determination of this factorf ∈ C was achieved and with the help of a certain notion



H. Grosse et al. / Journal of Geometry and Physics 42 (2002) 54–63 63

of integration the Chern numbersq associated withF were calculated. These turned out to
be noninteger, becoming integers in the commutative limitN →∞.
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